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ABSTRACT

In this thesis, an adaptive lattice algorithm is derived for an ARMA digital lattice
filter, whose parameters are estimated using a generalized Mullis-Roberts criterion for

parameter estimation. Design of the ARMA lattice filter based on this generalized cri-

terion is studied as is the accuracy of the parameter estimation algorithm used in its de-

sign. Application of the derived lattice algorithm to system identification modeling is

demonstrated through computer simulation of various system identification problems.
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1. INTRODUCTION

Digital signal processing is a field which is rapidly expanding due to advances in
modern technology. Essential to this field are digital filters. Modeling these filters con-
stitutes much of the effort involved in digital signal processing. The filters provide a
transfer function which describes the relationship between filter input and output.

Autoregressive (AR), moving average (MA) and combination autoregressive moving
average (ARMA) models are widely used to represent the transfer function of a digital
filter. A filter transfer function is commonly described in direct form. This form is a ratio
of two polynomials, usually of the form,

B(z) bo + b, z
-1 +. + bt z

-

H ) - l+az + ..+a sz- (+.1)

The above equation describes an ARMA model of order (s,t) where s is the order of tile
denominator and t the order of the numerator. The a, parameters form the

autoregressive portion of the ARMA model. The b, parameters form the moving average
portion of the ARMA model. If all the autoregressive parameters are zero, then the filter

transfer function H(z) is strictly a moving average process of order t. If all the moving

average parameters are zero except for b, equal to one, then the filter transfer function
is strictly an autoregressive process of order s.

A. OBJECTIVES OF THE THESIS
Fundamental to the design of digital filters is estimation of AR, MA or AR.MA

parameters. Accurate and efficient parameter estimation has been the subject in much

of the related digital signal processing literature [Refs. 1 ,2,3]. The first objective of this
thesis is to confirm the proposed ARMA parameter estimation algorithm of [Ref. 4: pp.

619-621], which leads to the design of a new ARMA digital lattice filter. The proposed

algorithm is a generalization of the Mullis-Roberts criterion for parameter estimation
known as the modified least squares problem [Ref. 5: pp. 227-228]. The algorithm uses
two recursive formula to estimate the parameters. One is an AR recursive formula which
estimates ARMA parametes as the AR order is increased by one. The other is an MA

recursive formula which estimates ARMA parameters as the MA order is increased by
one. This algorithm is unique in that it allows for the design of an ARMA model with



arbitrary AR and MA orders with no dependency of an AR model on an MA model or

vice versa. The ARMA digital filter designed from the proposed ARMA parameter es-

timation algorithm is in the form of a lattice structure. Lattice realizations of filters are

widely used and provide excellent analysis of prediction errors [Refs. 6 : pp. 165-168.7].

Gray and Markel developed an algorithm which produces lattice realizations of filters

from the direct form [Ref. 8].

The second objective of the thesis is to make the proposed ARMA digital lattice

filter of [Ref. 4: p. 662] adaptive. An adaptive lattice filter is one in which the lattice

coefficients are automatically adjusted by an adaptive algorithm to yield the optimum

filter design. The adaptive lattice algorithm derived in this thesis is based on the widely

used least mean square (LMS) algorithm. Adaptive filters have many applications [Ref.

9: pp. 7-311 including.

I. System identification.

2. Digital representation of speech.

3. Adaptive auotoregressive spectrum analysis.

4. Adaptive detection of a signal in noise of unknown statistics.

5. Echo cancellation.

6. Adaptive line enhancment.

7. Adaptive beamforming.

The need for an adaptive filter is made apparent by considering a filter of fixed design

which is optimized for given input conditions. In practice, the complete range of input

conditions may not be known or could change from time to time. A filter of fixed desiEn

would not produce optimum results under these conditions. An adaptive filter, which

yields optimum results given changing input conditions, will give superior performance

to one of fixed design.

The last objective is to analyze convergence properties of the derived adaptive lattice

algorithm. This is accomplished by computer implementation of the adaptive algorithm.

The output of a known transfer function is compared to the output of the adaptive

lattice filter given a common input. Plots of the error between the two outputs and

lattice coefficient convergence are obtained.

B. ORGANIZATION OF THE THESIS

Chapter 1I is designed to present the ARMA parameter estimation algorithm and

ARMA digital lattice filter proposed in [Ref. 4: pp. 617-628]. Computer simulation of the

, !



algorithm was performed and results are shown. A brief review of the Mullis-Robcrts

criterion is provided to establish a reference for expanding this criterion to the proposed

ARMA parameter estimation algorithm. An adaptive lattice algorithm is derived in

Chapter III which makes the proposed ARMA digital lattice filter adaptive. The adap-

tive lattice algorithm is efficient and accurate. Chapter IV contains experimental results

which show convergence aspects of the adaptive lattice algorithm when applied to

ARMA lattice filters. Conclusions about the proposed ARMA parameter estimation

algorithm as well as the derived adaptive algorithm are discussed.



11. ARMA DIGITAL LATTICE FILTER

In this chapter, we will review the Mullis-Roberts criterion for solving linear ap-

proximation problems and introduce analysis equations of the ARMA digital lattice fil-
ter. The criterion used in the formulation of the ARMA digital lattice filter is a

generalized form of the Mullis-Roberts criterion [Ref. 5: pp. 227-2281, which has been

given as a modified least mean square problem for ARMA parameter estimation.

A. MULLIS-ROBERTS CRITERION

The Mullis-Roberts criterion evolved from considering second order statistics in
conjuction with first order information about a process to obtain filter approximations.

Consider the bounded impulse response sequence h = {h0, h ... } containing first order

information about the filter h having a frequency response function,

H(e' ) . 'hkejwk (2.1)
k=O

Let { u, ) be a zero-mean, unit-variance, white-noise sequence and { y, } be the output

process corresponding to the input { u, } . then we have the following convolutional re-

lationship given by,

= Yhku,-k (2.2)

Second order information about the filter h is obtained from the autocorrelation se-

quence { r, } given as

rk = E(vJvt+k) = Zhjhk±, (2.3)
i=0

From equations (2.1) and (2.2), the second order interpolation problem is to find a

lowest order recursive filter which matches the data { h0, ... , h,,. r0, ... , r, } , where h, re-

presents the first order information and r, the second order statistics.

4



Let us now consider the case where only first order information about a process is

known. That is, given an impulse response sequence { h, h, ... ) , we want to find a re-

cursive filter of the form,

A)V -k qo + qlz - I +"-" + q,,z-"
1()= = (2.4)Hz) 1 + alz - 1 + ... + anz - .

k=O

which approximates H(z) and therefore the impulse response sequence { h0, h1, ... ) • We

also desire the frequency response 11(e-) to approximate the desired response lt(e'").

Suppose that H (e') is chosen such that it minimizes the integral squared error,

wz-_ I1(e) - )i,2d( = 11h - h112  (2.5)

Using the Parseval relation, we can obtain an alternative definition of the approximation

error.

2 H(e )  - i(eyih- hj1 = 1(hk - h ) (2.6)

k=0

If the filters 11(z) and H(z) are driven by the same white noise source. equation (2.6)

describes the output error between the filters which we write as,

h, = Ev, -. ,2 = Ec,)(2.)

where y, and f', are the outputs of the respective filters when driven by the same white

noise source as in (2.2). Minimizing (2.7) is a nonlinear programming problem requiring

the entire impulse response sequence. As a result, computational efforts for obtaining a

solution are inefficient. A modificatikn to the problem was introduced [Ref. 5: pp.

227-22S] which considered a cost function that is quadratic in the coefficients of the re-
cursive filter given by (2.4). The modification is described as follows. Let

Q(() = zXq) + qlz -I + + q ) (2.S)

5



and

A(z) = (l + a1: - l + + a(2.)

be the numerator and denominator polynonials, respectively, in (2.4). where .\= max

(nz.n). The task now is to find coefficients which ninimize the quadratic form.

E(e,) - j II1(&"Av) - Q('e)! 2dW (2.10)

This is a standard quadratic mininization problem whose integral can be expressed in

terms of the coefficients of polynomials A(z) and Q(z) and the data

{h ... , h,,,. r0. Q, r,}, relating to the filter tH(z). This problem is shown in Figure I and

equation (2.10) is known as the Mullis-Roberts criterion.

O(z)

Figure 1. Modified least squares problem

B. GENERALIZED MULLIS-ROBERTS CRITERION

In order to define the new criterion used for ARMA parameter estimation we con-

sider the following transfer function with input sequence { x(k). k - 1,2, ... } and output

sequence {(y(k), k 1,2, ... ) written as,

tl4(z)

n() -6



x(k) u(k)
1/H x(z)H (Z

Figure 2. Equivalent input/output model

where 14(z) and H,(z) are reference polynomials which we desire to model. An equivalent

model is shown in Figure 2 where u(k) is an intermediate signal, and the realization is

similar to that of the direct form realization II [Ref. 10: p. 1511. Let the intermediate

sequence ' u(k). k = 1.2 ... } be a zero-mean white gaussian process. The model of Fig-

ure 2 can then be transformed into the model of Figure 3 with u(k) as the common input

to both transfer functions l1,(:) and II,(z).

u (k) - Hy (Z) y y(k)

Ak xk)

H x (Z) • '

Figure 3. Transformed model

Note that we earlier defined transfer functions 1.(z) and H,(z) as polynomials of the

reference model. For each transfer function an estimation polynomial is defined such

!7



that

A(:) = 1 + a~z- 1 + + as:-s  estimates Il'(z) (2.121

B(:) = b0 + biz -I + + bt-1  estitnaies 1(z) (2.13)

where a, and b., (i = 1,2, ... , s) and ( = 1,2 .. ) , ), are the AR and MA parameters, re-

spectively. of the combined ARMA model formed by A(z) and B(z). This refined least

squares problem is shown in Figure 4 and is a generalized form of the Mullis-Roberts

criterion. If the reference model polynomial II,(z) in Figure 4 is equal to unity, we obtain
the Mullis-Roberts criterion shown in Figure 1. Therefore, by including reference

polynomial II,(:), the new criterion for ARMA parameter estimation becomes,

2

E .=- 2 zj-tt,.(z)A(z) - ttx(z)B(:)V -._ (2.14)

Figure 4. Refined least squares problem

Minimizing E,., is accomplished by calculating tie coefficients of A(z) and B(z) which

minimfize e(k): of Figure .4. Another form of eq (2.14-) is obtained by" applying Parseval's
theorem and is expressed as,

E,A, -- (:(A) - B()x())(2. 5)

which is obvious from Figure 4. The coefficients a,, (i= 1,..... s), and b, ( 1, ... , t),
which minimize E,., can then be calculated using the normal equations for ARMA

I • r = -



[U U m m* i i ..... . I i K a I m In I ! _ a n . . . . .F

parameter estimation. In order to obtain the normal equations for the problem in (2.15),

let us define the following:

a,,= [a, ... a5] and b5 ,t = [b) ... b] (2.16)

are the vectors of AR and MA parameters, respectively,

hb,(k) =[ .y k) ... y(k - s) -x(k) ... -x(k - 1) (2.17)

is the data vector consisting of both input and output data elements and

R,, = E[hs,,(k)T hs,t(k)] (2.18)

is the data autocorrelation matrix. The criterion is to minimize the mean squared error

EsIr =[ e'h]- E[ [ as,, b ,,f, $]

=E[[y(A)-+- [ as t b0  bs t ]2] (2.19)

Now following the standard calculus of variation optimization procedure for minimizing

E,,,, [Ref. 11: pp. 100-110], yields the normal equations in the matrix form,

[1 as'r bo b s]t]R,.,= [ minEs, 0 0 0] (2.20)

It is interesting to note that if E,, in equation (2.14) is zero, then we have the following

equality,

H(:)- ) (2.21)

If,(:) .4(:)

so the estimate for the total reference model H(z) is the ratio of B(z), the MA part and

A(z), the AR part of an estimated ARMA model.

C. ARMA PARAMETER ESTIMATION

Now that the criterion for ARMA parameter estimation has been established, the

solution method to estimate the ARMA model parameters to minimize equation (2.14)

is considered. Let x(k) and v(k) be the input and output signals. respectively, of the es-

timated ARMA model. Using a difference equation representation. this process is de-

scribed bv

9



y(k) = - a y(k -J) + b. x(k - i) (2.22)
j= 1 1=0

For these input and output signals we define four estimation, or prediction, models as
follows. The forward estimation signal for x(k) is defined as,

g S

i#{)=-bx x(k - i+Zajy k -j) (2.23)
1=1 J=1

where bj; and ax are the corresponding estimation parameters. The forward esitmation

signal for y(k) is similarly defined as,

S I

/(k) = -Z y(k -J) + Z by x(k -i) (2.24)
j=1 i=1

The backward estimation errors for x(k - t) and y(k - s) are then given by,

.vb(k-t)- Zb? x(k - i)+ vj jk -j) (2.25)
t-- -1

1=0 j=0

J'(k -s) - aj (A-j)+Zbid x(k -i) (2.26)
J=O i=0

where the superscripts g and d indicate the backward estimation parameters for x and

y, respectively.

From these estimation models, we can now obtain the four prediction errors at any

given time k. These errors are expressed as differences between the predicted value and

actual value of an input or output signal, namely,

Vj(k) = -4k)+ Ak) (2.27)

,(k) =y(k) _ Vk) (2.28)

gs,,(k) = x(k - t) - b(k - t) (2.29)

10



,.,#) =y(k - s) -.'(k - s) (2.30)

We now use the vector notation to simplify the expressions for prediction errors. In the

following, the forward error elements corresponding to both x and y form a vector

v,(k), given by

vs,t(k) [ -Xt(k) v t(k)] = hst(k) C T  (2.31)
S, r, , $,

and the backward error vectors are given by

T

g,Ck) =-hsAk) GS,, (2.3 2)

ds,t(k) = h,,(k) D T (2.33)

where C, and G, and D., arc the forward estimation parameter matrix and backward

estimation parameter vectors, respectively, defined as

0 a ... ax  I b ... b"1a, ... s 0 b' ... b j (2.34)

G,,,= [a ... a-1 0 bg ... bg_ 1] (2.35)

d d d 1Ds'[ [aO ... a _ 1  I bo ... b1, 1  O (2.36)

It can be shown that the prediction errors satisfy some orthogonal conditions. These

conditions are similar to those found in AR modeling problems [Ref. 6 pp. 116-121].

We now list the orthogonality conditions for the ARMA formulation in discussion

without proof as the following:

E[ .x,(A-) .(A- -) 0= E[ v-;,(k) y(k- ]=
E[ vf,(k) y(k -j) ] = 0 E[ ,v,,(k) y(k -) ] = 0

E[gst(k - 1) y(k -j)] = 0 (3.37)

E[g.t(k - I) x(k - i ] = 0

ECd5 .(k - 1) y(k -j)] = 0

11-



EE d,,I(k - 1) x( k - i)] =0

where i 1,2, ... tt and j 1,2, , s.

In Section B we have obtained a set of normal equations in terms of R,, and the

ARMA estimation parameters. In this section, we have defined four sets of forward and

backward estimation parameters and established some orthogonal relationships. In what

follows, we derive a set of equations which relates the coefficients of the estimated

ARMA model with those of the forward estimation parameter matrix C,.,. Consider the

expected value of the forward prediction error, v,(k) and the data h,(k). Since the pre-

diction error is orthogonal to all past samples of data y(k -j), x(k - i) but not to y(k)
or x(k) as listed in (2.37), the result is a matrix which is defined as

T 0 0 1
E[v,,,(k)T hs,,k)][. 0 038)

where
=j -E Xv,,,(k).y(k)] = -E[ x.k) t,(k)] = Eh,  (2.39)

is the crosscorrelation between the forward prediction errors of x and y at lag zero.
= E [ (k) x(k) E .,(k)) 2 ] = E (2.)

is the forward prediction error power of x(k)

3  E[,',(k)y(k) E[ (,(k))2 ]=Ei, (2.41)

is the forward prediction error power ofy(k) and

4 -- E [ vs',(k) x(k) ]=-E [ vsy',(k) v,(k)] =s Yr (2.42)

is the crosscorrelation between the forward prediction errors of y and x at lag zero. In
another interpretation, the left hand side of equation (2.38) can be written as,

E [ v,,,(k)T'hs31(k)] E [ Ci,, h,,k)T'h,Xk) ]=CS,, Ri,, (2.43)

and we have

12



[r'0 Er0

from equation (2.38).
A similar approach for both backward prediction errors yields the following

Eg d 0 E_,
s"] R,,, = [ D  E (2.45)[~:I;Rs,: [ E d 0 E ]

In order to express the coefficients of the ARMA estimation model in terms of the co-
efficients of the parameter estimation matrix C,,, and parameter vectors G,,, and D,,,.
consider the combination of the normal equation (2.20) and the parameter estimation
matrix and vectors. From equation (2.44) the normal equation for ARMA parameter
estimation may be written as

R,[ EXY 0 E~t 01(.6
a',0 =, [ E t 0 Esy (206

Combining equation (2.46) with (2.20) we obtain[ a,,, b0 bs51  E,,mi n 0 0 0
'ta bx 0,t E, 0E,
0as I .b'Y 5 = E, (2.47)las,b, ",, E, t o0E;"o

In equation (2.47) multiply row 2 by -. then subtract row 2 from row 3 and equateE'.r
the resuit to row 1. We then obtain the following relations

as5 t = Ts- ax~- 1 Erix (.4S)

EXY
t t- aF " (2.49)

Esr

0 - EsK (2.50)

and,

13



(EL~)'
E, mnn = E- Ex',(

Calculation of the ARMA estimation model coefficients requires knowledge of the esti-

mation parameters a,.,, a,.,, b.,, by',, b0 and the values E.,,,, E, Ex . Recursive formulas

calculate the estimation parameters as the AR or MA order of the estimation model in-

creases by one. Given the parameters of the ARMA estimation model of order (s, t)

these formulas calculate the (s + I , t) or (s, t + 1) ARMA parameters. For a compre-

hensive derivation of these recursive formulae see [Ref. 4: pp. 619-6211. The AR-type

recursive formula for the forward parameter estimation matrix and backward estimation

parameter vectors is

Cs+ht = Cs,tl1 + uI Ds,j 12

Gs+ir = [ Gs, + U2 Ds,, ] 1, (2.52)

D5+11t= Ds't 12 + I u3 Cs, + ua Gs,, + u5 D,,] I1

where

= =- (E1)' Em !,2 J
-EfU

U2- E

us - E m ] E (2.53)

(Eo. T, - , T3)
114 = ( , _g  Ea" E 1[E,)- E;,z, ]

U5 = U4 112

and the (s+ 1,t) prediction error powers are recursively calulated as follows

Es+,,, Es,, + u, [ T- I 2]

E s ,t= 3 + U2  4T (2.54)

es+ 1t= E,,t + [ I1 T2 I U3+ U4 "3 + U5! 4

Eg E= + uEd

The matrices 1, and 12 are of dimension (s + t + 2 x s + t + 3). They are introduced to

provide symmetry to the matrix algebra and preserve initial condition calculations. We

design the matrices to perform the following operations

14



[w01 ...ws+I wO+2 ... 0s+t+2 ]I 1  W... Os+l 0 09s+2 ... 0s+t+2] (2.55)

" o01 ... 09s+1 S+2 ... W,+ 1+2 11 2 =[ 0 U) . +1 O ws+2 ... o+t+1  ] (2.56)

The values ;T through r4 can be obtained through the correlation data and forward and

backward estimation parameters. We express them mathematically as

I T I _2 I = E [ d,,,(k - 1) v.,,(k) ]
T3 = -E E y(k -s- 1) gs(k)] (2.57)

T4 = E [ (k-s- 1)d,,(k) ]

The MA-type recursive formula for the forward estimation parameter matrix and back-

ward estimation parameter vectors is obtained in a similar manner. The recursive for-

mula is given by

Cs,t+ 1 - Cs't 13 +t n, Gs,, 14

Dst+1 = [ Ds~t + n2 Gs t ] 13 (2.58)

Gst+1 = Gs, 14 + [ n3 C,t + n4 Ds, + n5 Gs,] 13

where

, - (E)-, l 'i '2 2

~g
S.!

n3 = - [ '2 ] E' (2.59)

Egg, .g I

n5 n4 t12

and the (s,t + I) prediction error powers are calculated using the following recursive for-

mulas

E,,+ I E,,, + nT [ T' T2]
gd +
S,1+1(2.60)

IY = Ef, + [ T'1 Z 2 ] n + t14 T'3 + n ('6

4,t + n2 2E
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where I3 and 14 are (s + t + 2 x s + t + 3) dimensional matrices which we have desiened

to perform the following operations

[C1 ... os+1 ws+2 ... os+2 - 1] 3 [l ... Cos+] os+2 ... os+t+2 0] (2.61)

[Col ... W+ 1 CL)s+ 2 ... Cs+t+2] l4 = [0 )1 ... OS 0 's+ 2 ... Os+t+2 (2.62)

The values of -r', through r', are calculated using correlation data in conjunction with

current forward and backward parameter estimation values. We express these quantities

mathematically as

T1 I T/2 Elg,( - 1) ,,,Xk)]

T3 = -E[ x(k - t - 1) ds/t(k)] (2.63)
T'4 = E E x(k - t - 1) g,t(k) ]

It is interesting to note that the MA-type recursive formula is the complimentary form

of the AR-type formula and that the two are identical if the variables associated with the

input signal x(k) and the variables associated with the ouput signal y(k) are interchanged.

That is, we replace y(,), G., and g,(k) with -x(k). D,, and d,,(k) and vice versa.

1. Experimental Results

The ARMA parameter estimation algorithm of [Ref. 4: pp. 619-621] based on

the recursive formulas of equations (2.52) and (2.58) was implemented using the Fortran

program found in Appendix A. This program calls subroutines which compute the

ARMA model parameters as the AR order is increased by one and as the MA order is

increased by one. These subroutines are shown in Appendix B and Appendix C. respec-

tively. In the main program, an input data sequence of white Gaussian noise is passed

through a known reference model producing an ouput data sequence. We obtain

autocorrelation and crosscorrelation data from these input and output sequences. The

correlation data is used to calculate initial values of the error powers for x and y as well

as -r, through T4 and T', through r'4 . Next we obtain estimates of the reference model by

employing the recursive formulas (2.48) through (2.50), (2.52) and (2.58). Several refer-

ence models were estimated beginning with a strictly AR process of order s = .4 having

as its transfer function

1(z)2 1 3 (2.64)
1-0.2 z + 0.62 2 - 0.152z + 0.3016 z

16



The actual values of the reference model parameters and the ARMA model parameters

which estimate this reference model are listed below

ACTUAL ESTIMATED

AR: 0.2000 0.2005831

-0.6200 -0.6207655

0.1520 0.1527565

-0.3016 -0.3020376

MA: 1.0000 1.0001506

We next consider a second reference model with MA order t-- 2 and AR order s = 3

having transfer function

0.5 - 0.40 z-1 + 0.89 z-2

1(z) --= -0.20.-1 - 0.25 '-2 + 0.05 z- (2.65)

The true reference model parameters and ARMA model parameter estimates are shown

to be

ACTUAL ESTIMATED

AR: 0.2000 0.1993060

0.2500 0.2496567

-0.0500 -0.0491961

MA: 0.5000 0.5002602

-0.4000 -0.3997071

0.8900 0.8894749

A third example with MA order t = 2 and AR order s = 4 having transfer function

H(Z) = +1 + 0.2 - - - 0.99 z-2
I - 0.2 z- + 0.62 z2 - 0.152 z-3 + 0.3016 z(.

17



was considered for which we obtained the following actual and estimated reference

model parameter values

ACTUAL ESTIMATED

AR: 0.2000 0.2011805

-0.6200 -0.6223803

0.1520 0.1534197

-0.3016 -0.3036823

MA: 1.0000 0.9997638

0.2000 0.1998342

-0.9900 -0.9886852

We consider as a final example the reference model of AR order and MA order s 3 and

t = 3. respectively, with specific transfer function

0.5- O.q5 < 1 1.33 z-2 0.979 _3
H(z)=I + 1.69 z- - 0.962 Z-2 + 0.2 7

-  (2.67)

The actual and estimated ARMA parameters are

ACTUAL ESTIMATED

AR: -1.6900 -1.6981325

0.9620 0.9690998

-0.2000 -0.2018440

MA: 0.5000 0.4995653

-0.9500 -0.9553509

1.3300 1.3346767

-0.9790 -0.9864898

The above examples demonstrate the validity of the parameter estimation algo-

rithm of (Ref. 4: pp. 619-6211. Many reference models were estimated using this algo-

rithm. including pure MA processes, for which accurate estimates were obtained.

18



D. LATTICE STRUCTURE

In section C we developed expressions for the forward and backward prediction er-

rors. namely. those of equations (2.31), (2.32) and (2.33). From these prediction error

equations we can design elementary AR, MA and ARMA lattice structures or sections.

Each elementary section satisfies the orthogonal conditions as listed in equation (2.37).

From the prediction error recursive formulae, equations (2.31). (2.32) and (2.33), we

construct the AR-type elementary lattice section as follows. Consider the following data

set of order (s + 1,t) consisting of input and output data elements,

hs+.,1 (k) IT [y(k)... v(k - s) -x(k)...-x(k - t+ 1) -x(k - t) (2.68)

hs+,,t(k) I=[y(k - 1)...(k - s - 1) -x(k - 1)... -x(k - t) 0J (2.69)

where IT and 17 are the transposes of the matrices 11 and 12 defined in equations (2.55)

and (2.56). We obtain a recursive relationship between the forward prediction errors

v(k) of order (s + 1.1) and order (s.!) by substituting equations (2.52). (2.68) and (2.69)

in equation (2.31) such that

Vs+lt(k) = ij+1 tk) cT+1

= hs+1 /k)[1C,, + 1 2 stu (2.70)

= 5,,() + d,,(k - 1) u,

The backward prediction error recursions are obtained in a similar manner and the

AR-type error recursions are x1
Vj+ 1.(k) = .,k) - u- d,,,(k - 1)

s+1.(k )= is.[ (k) + u, d.t(k - 1) (2.71)

CIS+. = g,1t(k) - u, ts.,(k)
d,(k) = k -1) ± [ u3 4 ] V, ,(k)T_ u., a (k)

where u, = [ u- ul I and u3 = [ u; u ]. The AR-type elementary lattice inverse section

based on these error recursions is shown in Figure 5.
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prediction error recursions. Assungn that the prediction errors are known for a cixven
model ordcr (5.t). the (s-- 1.0 prediction errors can be calculated. These prediction errors
of order (s- Lt) are then updated as the MA order increases by one resulting in a pre-
diction error of order 0, - L t + I ). We consider the forward prediction error for x as the

AR order is increased by one. specifically

VSI[()= vs.(1:) - 14"d. k- 1)(2)

Now. (k) become's the current value of the forwvard prediction error for x and when
we calculate the (s- +L~t- +) forward prediction error we have from equation (2.7-3)

vS 11 (k) = x~1 (k) + nx ~ 1 (k - 1) (2.76)

Equation (2.76) can be expressed in terms of the (s.t) forward prediction errors of x by
making appropriate substitutions for v; . (k) and g 1,(k - 1). That is, we substitute

v;(k) and g,,(k - 1) of equation (2.71) in equation (2.76) to obtain the (s+ l.t+ 1)
forward prediction errors for x, namely.

vs1.+ (k) = vix, (k) - u-j d-, (k - 1) + n".[ -5 (k - 1) - u d. (A - 1)] (2.77)
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Grouping the terms we obtain

Vs + I,+I (k) = v.x()-(,+n'u)d,,( ) xg, k-1

The forward prediction error recursion for y of order (s + l,t + 1) is obtained in a similar

manner. We begin with the (s+ l,t) order update of the prediction error and after it is

computed, update the MA order. Specifically, we have

S+ ,, (k) = Vy,, (k) + uly d,, (k - 1) (2.79)

and from equation (2.73)

V (k) = v (k) - g,+ ,, (k -1) (2.SO)

Substituting (2.71) for ".,(k) and g,., (k - 1) in equation (2.80) then grouping terms

we obtain the (s + l,t + I) forward prediction error recursion for y,

Y+lt+l (k) = , (k) + (u+n u2) d,(k - 1) - ngs.,2 (k - 1)2.1)

The (s+ l.t+ 1) backward prediction errors for x and y are derived in a similar manner

and are given by,

g,+) +(k) = g .1  (k - 1) + (n-" + n4  u3x) vx  ( +, (V)

d,+I.t+1 (k) = d,, (k - 1) - u x ,t (k) + ' , (k) (2.82)

The ARMA elementary lattice inverse section is shown in Figure 7 where the coefficients

are related to the prediction error recursions by the following
Il -I 0 + =y u,

w, = (u' + + U _V n , U), v= n, (2.83)

' = (n3 + n u3, 'r+ 4 t4) N w ,7 wU3 = t3 (2.84)
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s't +

' ~s+l ,t+l

rigure 7. ARMA elemnentarl lattice section

We see from Figure 7 that each elementary AR.\.A lattice inverse section contains eight

coefficients.

From the AR, MA and AR.MA elementary lattice inverse sections, we can obtain

synthesis lattice structures. These structures provide a means of working with lattice re-

alizations as linear filters. The resulting AR,., MA and ARMA elementary synthesis

lattice filters are shown in Figures S and 9 respectively.
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Figure 8.. Top: AR elementary lattice filter. Bottom: NIA elementary lattice section.
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w8 . w 7

d (k) .Z- ' w 3  +d (k)

st s+l ,t+l

Figure 9. ARNIA elementar lattice filter

Summarizing. in this chapter we have reviewed the Mullis-Roberts criterion, intro-

duced the ARMA parameter estimation as a generalized Mullis-Roberts criterion and

obtained analysis and synthesis forms of lattice structures. We notice that each ARMA

elementary lattice section consists of eight reflection parameters and the calculation of

these parameters requires the autocorrelation and crosscorrelation information as ob-

tained from the input output data of the reference model. Also, we obtained a set of

equations relating the final model estimation parameters and the prediction error model

parameters which inturn are obtained from the eight lattice parameters.
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III. ADAPTIVE LATTICE ALGORITHM

A. LEAST MEAN SQUARE ALGORITHM
The study and design of adaptive filters is known to be a very important part of

statistical signal processing. Many adaptive algorithms have been developed to support

the application of adaptive filtering in communications and control [Ref. 121. An adap-

tive filter is characterized by the ability of its filter coefficients to adjust (self-optimize)

automatically and yield an optimum filter design. Two processes occur within an adap-

tive filter, namely, the adaptation and the filtering processes. During the filtering process

a desired signal is applied to an adaptive algorithm as a reference for adjusting the filter

coefficients. Figure 10 shows a block diagram of the adaptive modeling process. Refer-

ring to Figure 10, let y(k) be the output of the filter at time k. By comparing the output

with the desired signal d(k) , an error signal e(k) is generated. The adaptive algorithm

of the filter uses this error signal to generate corrections which are applied to the filter

coefficients such that an optimum solution is obtained. An optimization technique called

the method of steepest descent provides an approach to solving this problem. The pro-

cedure is as follows:

1. Assign initial values to all filter coefficients.

2. Using these initial values, compute the gradient vector, whose individual elements
equal the first derivatives of the mean-squared error with respect to the filter coef-
ficients.

3. Compute values for the filter coefficients by changing the initial values in the di-
rection opposite that of the gradient.

4. Return to step 2 and repeat the procedure.

There is, however, a limitation to this pr cedure. The steepest descent algorithm requires

exact measurements of the gradient vector at each iteration which, in practice, is not

possible. Therefore, the gradient vector must be estimated and consequently, errors are

introduced. An algorithm is required which computes the gradient from the available

data. The least mean square (LMS) algorithm, developed by Widrow and Hofl; is widely

used and is very convenient to implement in real time hardware [Ref. 13: pp. 96-1041.

Let y(k) be the output of the filter and d(k) the desired signal at time k as shown in

Figure 10. We compute the error by taking the difference between these two signals.

namely,
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Figure 10. Adaptive modeling block diagram

c(k) = d(k) - v(k) (3.1)

The value of the mean-squared error is the expected value of the error squared,

E[ e2(k) ] and the gradient vector, V (A) , is the first derivative of the mean-squared er-

ror. The gradient vector is given by

V(k)- E I k) e e(k) (3.2)

SE[ ii(k) ]= 2 e(k)

where w(k) is the time dependent filter coeflicicnt vector. The recursion for the filter

coeflicient which changes the old value in the direction opposite to that of the gradient

is then given by,

i(k) = %(k - 1) + E -V (k)]
2 (3.3)

-W(k - 1) - p e(k) e(k)

where w(k) is the filter coefficient vector estimate at the k"' iteration, 'A(k - 1) is the past

filter coefficient vector estimate, A is the convergence (gain) constant. e(k) is the error
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signal at the kh iteration and - e(k) is the instantaneous gradient. The implemen-
w( k)tation of this algorithm proceeds as follows:

1. Assign initial values to the filter coefficients.

2. Compute the value for the error signal e(k).

3. Calculate the updated estimate of the filter coefficients using the instantaneous
gradient.

4. Increment the time index by one and return to step 1.

Convergence properties of the LMS algorithm are well documented within the literature.
The choice of a gain constant ju is arbitrary however, theoretical bounds have been de-

rived for A , given by (Ref. 14: pp. 101-1061,

0 <U < 2.1" (3.4)
;.max Tr[R](4

where A-. is the maximum eigenvalue of the input autocorrelation matrix, R,, and

where Tr [ R,, ] is the trace of the matrix R,,.

B. DERIVATION OF THE ADAPTIVE LATTICE ALGORITHM

The adaptive lattice algorithm developed in this thesis uses concepts of the LMS

algorithm discussed in section A and applies them to the ARMA digital lattice filter

proposed in Chapter II. Consider the ARMA digital lattice filter of Figure 11, which

consists of two cascaded elementarv lattice sections. The filter coefficients (weights) are

defined such that ig, represents the ,1 lattice coefficient at stage ni of the lattice structure.

In this figure we have a two stage lattice and there are eight coefficients per elementary

lattice section. The output, S'(k), of the lattice filter can be determined from

J-(k) = e(k) + wI e'(k - 1) - ;' e6'(k- 1) (3.5)

Forward errors at a given stage m of the lattice filter are defined as,

f'(k) = e._ (k) 2 6L, 1 1 _- (k -ef (k) = ef, (k) + w4 x (A - l) - ,,. (-1 (3.6)

and the backward errors for any given stage m are,

el,, (k)= e (k - 1) + wn e,, (k) - w" , (k)
b(3.7)CY (k) = eb, (w"I- ,' es., (k) + w",' 'v, (
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where, in Figure 11. m - 1,2 and e~ x(k) and e% = '(k). The terminal condition is

e., (k)- b0 e;(k): m = 2 . To begin with, let b0 equal unity. The initial conditions are

e), (k - 1) = 0 and ex0 (k - 1) = 0. As with the LMS algorithm, we form an error between

a desired signal dl(k) and the output signal .'(k) such that,

e(k) = d(k) - (k) (3.8)

The instantaneous gradient according to eq (3.2) is then,

?A

V(k) = 2 e(k) '-a- [d(k) -. (k)] (3.9)

Since the desired signal, d(k), is not a function of the filter coefficients, equation (3.9)

redu,'es to.

V(k) = 2 e(k) k(k) (3.10)
N (k)'

where the quantity --- [ -'(k) ] is referred to as the gradient estimator. This gra-. w(k)
dient estimator must be computed for each filter coefficient within the lattice structure.

The filter coefficients are then updated using the respective gradient estimators. That is.

we need to compute.

V( -)=- (k) fori= 1.2. 8 and j= 1.2 ...... '1 (3.11)

where M is the number of stages in the ARMA lattice filter. From equation (3.5). the

gradient estimates are given by

e () - eXv ,k) & x(k- 1)"
e -+ w ' (k-Y ) (k --

CC1Ce " (k - 1)

Let O(k) represent the partial derivatives of the output (k) with respect to the filter co-

efficients and O(k) represent the partial derivatives of the errors with respect to the filter

coefficients. Using this representation we can re-write equation (3.12) as follows.
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and Ij or i = 3 and j = 1 respectively. We compute ,, (k)

cursive relations which calculate the partial derivative of the forward and backward er-

rors with respect to the filter coefficients. These relations are obtained from equations

(3.6) and (3.7) by taking the partial derivatives with respect to the filter coefficients,

namely,

mii

i(k) = j k 1 (k) + o ex _1 (k - 1) + 4 Ob X(k - 1) - I (k - 1)

ni+i v
-w 3  O jj (k - 1 )

~~j (A) _ j (k - 1) + 6m'j ef (A + 1 tk - 66e (A)wh , , ae k r(k) (3 .1 ae is ne M a o 14)

0 (j = 3 a (k - 1) - 6!s/ ef (k) - xf (k) (k)

These recursive relations possess a lattice structure similar to that of Figure 11. with

delta components injected at the summation nodes. They may also be simplified by ex-

ami ning individual terms. Consider the general equation for the Forward error in X. re-

peated here for continuity'.

fj._= e (k) + w 6_,(k -1) - wm v (k-l1) (3.15)

The partial derivative with respect to each filter coefficient is expressed as,

efk , (kk -1+wf (k) I t ,/ (k - 1)
(A- l-w,._(A- 1 (k - 1)
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Since the partial derivative is taken with respect to the current filter coeffik,ent i; at time

k, the partial dcrivatives involving delay terms i.e., (k - 1). are set to zL J. This result

follows from the realistic assumption that e; (k - 1) is a function of w; (k - 1) but not

of vv; (A) . Also note that v; (k) is a function of w,' (k - 1) but not vice versa. With these

simplifications we reduce the equations of (3.14) to,

L.j (k) = 1L 1j(A) + 6Teb._, -)- 1 (-

-. j, j (k) + (1, ( 3) ( )17)
Ox , (k) = 6miJ efx - 66 1e -- m6 - )3

OY iJ X (A m mVi; (A) = -7j e11_, (k) - ? 1_,j (k) + bme _ (k) + w8 &-,(k)

and the gradient estimator is,

-(k-) (3.18)

Although these are valid recursive relations, they are digicult to implement in a lattice

algorithm. The ultimate goal is the requirement to easily compute i,. (k) from the

available data. From eq (3.18) it is evident that ti,; (k) depends on , (k) which in turn

requires knowledge of , (k) and ,, (k) but not of 0 . ,, (k) or , (k). Therefore the

three equations necessary to compute the gradient estimator are,

, (A) = (k (k) + e, et, (k - 1)- °3 ebo (k)- ()
_ (k - 1 -,"Y (k - 1)..i(k)= f,,_ (k) + (3€-19) 1 -0 ieb _, -

(k)- 0''+:- 1 (k - (k - 1) - 6(m+ ')j ey, (k - 1)

These equations are dependent on the filter coefficients w'. = 1.2.3.4 and

j = 1.2 .... M, thereby reducing by one-half the number of computations required for

;mi (k) and , (k). A recursive relation is desired for k,, (k) which does not involve

delta functions. Consider the four stage lattice filter with terminal condition b0 equal to

unity such that .,,(k)= 0 f ij(k) . The procedure for computing ,(k) using the

equations of (3.19) is as follows:

1. Calculate 0; j(k) with nz equal to one and letting i andj range from one to four.
Repeat for ni = 2,3,4.

2. Using the terminal condition and expression for Om ,j (k), calculate 0. ,, (k).

This requires solving 88 equations, however, the result is a very simple recursive formula

for 1P,, (k) , namely.
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Oij (k) = - e (k-) i= 1, 3

i '1 (k) =e (l x=2, (3. 20j, _, (k- l1) i= 2, 4

The lattice coefficients are calculated by substituting the recursive formula of eq (3.20)

for the gradient estimator in equation (3.3). The adaptive coefficient update equation is,

n (k) = ws' (k - 1) - ) e(k) Ou (k) (3.21)

Since the gradient estimator, and therefore the gradient, is the same for w; , i = 1,3 and

w;, i= 2,4 , it follows that iq, = w and .vw = w.. The number of filter coefficients re-

quired to update the lattice filter is reduced to two, i.e., w i and wt. Furthermore, from

the symmetry of the lattice structure, the following equalities between filter coefficients

are assumed.

S= l4

= (~3.22)

Incorporating these equalities with those derived by the gradient estimator produces the

elementar ARNIA lattice section of Figure 12 where.

U2 = = =
I I I(31.23)11' = 1 = " =' i

To prove that these coefficient reductions are valid, a computer generated solution using

the Fortran program of Appendix D was compared to hand analysis of a second order

transfer function and lattice filter. The output of the ARMA digital lattice filter was first

put into difference equation form and then compared to the known transfer function.

From this comparison, lattice coefficients were computed. Details of this analysis are as

follows. Consider a two stage ARMA digital lattice filter comprised of the reduced ele-

mentav section shown in Figure 13 and a transfer function of the form.

= b + b z - I + b2  2 (3.24)
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Figure 12. Simplified elementary ARMA lattice section.

The output of the lattice filter can be written in difference equation form by carring out

the following steps: (i) start with the output of the lattice filter equation (3.5), (ii) sub-

stitute expressions for the forward and backward errors, equations (3.6) and (3.7). re-

spectively. into equation (3.5) arid (iii) carry out the algebra. A detailed derivation of this

difference equation is given in Appendix E. The difference equation in its final form is

given by,

+ 1 .2 + 1W22
y(k) = x(k) + 2( + W1  , + w )x(k - 1) + 2 w2 x(k - 2)

S 1 2 (3.25)
-2( + V' ;2 , VV )bk - 1) w-v(k - 2)

which can be written in the transfer function form as,
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1 2 2 1 2 -2l+ 2( w + it: IV + W W)z + 2 z.)Hkz) - -- 1 2 1v 1v 2- Z )2(.26)
1  + 2( IV + w2 w2 + wj ) Z_ + 2 (326

Comparing the lattice filter transfer function, HXz) with the known filter transfer func-

tion H(z), produces the following relationships between filter coefficients,

1 1 2 12
b = 2(w2 + W w 1 + W2 W)

-) I+1 2 1 2a, = 2(. + w2 2 + w2 w 1  (27)

b2 = 2 w2
2a2 = 2 wi

Solving for wv and wv in terms of the known transfer function coefficients b, and a2 and

then substituting these results into the expressions for b, and a, respectively, yields the

following.

b, = a2 W, + (24- b2 )w (3.28)a, =(2+a2)wVl + 21

or in matrix form,

= 2 a2 2 b21 wl' (3.29)

and solving for the lattice coefficients, we have

bi[ 12 - (2+ b,
LV2 = a 2 - (2+ b2)(2+ a2 ) -(2+ a2) a [ a (

and

2 b2
W2 =(3.31)

2 a
W =

Now that a method of converting between lattice and transfer function coefficients for

a second order system has been established, we consider the specific transfer function

35



S- 0.8- -. 78z -2
Hflz) 0-- +177-'2 (3.32)

1 - 0.89 z - + 0.25 z(

where

bo = 1.0 b1 =-0.80 b2 =1.78
a, =-0.89 a2 =0.25

From equations (3.30) and (3.31) the lattice coefficients are calculated as,

2 2
W1 0.125, W2 = 0.890, w = -0.240719, w2 = -0.195719

Values for the steady-state lattice coefficients were computed using the Fortran program

in Appendix D and are shown below. Convergence aspects of both the lattice coeffi-

cients and output error are shown in Figure 13.

w2 -0.124982, wj =0.890003, wi =-0.240710, wl =-0.195711

these results confirm the validity of the derived adaptive lattice algorithm and the design

of a new elementary lattice section shown in Figure 12.

The current adaptive lattice algorithm assumes that the terminal condition is unity.

This is generally not the case in practice. We now extend this adaptive algorithm to the

more general case where the terminal condition is an arbitrary constant. The recursive

relation which updates bo is similar to those which update the other lattice filter coeffi-

cients. The update equation for b0 is given by

bo(k) = bo(k - 1)- pj e(k) -bo(k) (3.33)

Ob(k)

The gradient estimator b is calculated using equations (3.5), (3.8) and the fact that
the desired signal d(k, is not dependent on bo. The gradient estimator for b, is written

as.

, (k Mok) -e~ -) 1)
-- + -Fb-eb k -)+w4 e-(k- )

ebo 0 0 eb ebo(3.34)

w3 b0

Since the partial derivative is taken with respect to b0 at time k, this reduces to,
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Figure 13. Top: Lattice coefficients. Bottom: Output error.
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"(k) -()-~0  b (3,35)ebo ebo

Similarly,

e(,)w b(k)+w4 ,+, e (k -1) w +' e,.(k -I) (3.36)

and the partial derivative with respect to b0 is

a. (k) _ 8ef (k)- (3.37)
bo  Obo

The terminal condition is,

., (k) bo ex (k) (3.38)

Taking the partial derivative of equation (3.38) with respect to b0 yields e," (k), and the

recursive equation to update b0 (k) becomes,

bo(k) = bo(k - 1) - p e(k) ex (k) (3.39)

The gradient estimators for the lattice flter coefficients are scaled by the arbitrary con-

stant b,, since at the terminal condition 0j;M j(k)= b, 0,,(k) and b0 is propagated

through the calculations. The gradient estimators become,

OtP (k) = bo e
y (k - 1) i = 1,3

Cb_ (k - 1) i = 2,4 (~.

To test this more general adaptive lattice algorithm the output of a known transfer
function with b0 equal to 0.5 was compared to the output of the ARMA digital lattice

filter. The second order transfer function used was,

0.5 - 0.4 z -1 + 0.89 z-2  (3.41)
I - 0.89 z-1 + 0.25 z-2

The computer generated steady state lattice coefficients are given below and convergence

aspects shown in Figure 14.

bo = 0.499946, w --0.120428, w = 0.593237, w' = -0.447423, w = 0.166320
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Figure 14. Top: Lattice coefficients. Bottom: Output error.
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In order to maintain the same adaptive time constant and misadjustment at each

stage in the lattice, the convergence constant is normalized by the power level at each

stage [Ref. 151. Therefore, we can write equations (3.21) and (3.39) as,

W, (k) - vJ (k - 1) - u  e(k) Ojj~ (k)

2 (k)

where t is the convergence constant and o (k) and y2 (k) are estimates of the power at

the?" stage for , and b0 respectively and computed as follows:

a( p ((- =)+ ( -()k j(k)
>, (k)= p y2 (k - 1) + (l - p) [x (k) ]2 (3.43)

Writing equation (3.42) using the notation adopted for the reduced elementary ARMA

lattice section we obtain

rj k)= j ( -1)- u e(k) x ( l
ri ( = rj ( k - ) 2 e b-,_ , (k - 1

Gi (k)
kj (k) = k (k - l) e2 )ey( - 1

( e(k) - (344)

bo (k) = b0 (k - 1) - 2"(k-'-k ef'. (k)

In the above equations p is a weighting parameter, 0 < p < 1, which distributes the

amount of weight given the past power level or current sample. Normalized convergence

constants are used in all examples of this thesis. The adaptive lattice algorithm is sum-

marized in Table 1.

In summary, we have derived an adaptive algorithm based on the LMS theory of

adaptive coefficient computation. This new adaptive algorithm easily updates the lattice

coefficients by using available data. The original requirement to update eight coefficients

of an elementary ARMA lattice section was reduced to updating only two coefficients

and still being able to describe the lattice. The algorithm is general in that it applies to

systems whose terminal condition is an arbitrary constant. The validity of this algorithm

was demonstrated through comparisons between hand analysis and computer simu-

lation. In the next chapter, we further demonstrate the convergence of this algorithm.
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Table i. SUMMARY OF ADAPTIVE LATTICE ALGORITHM
With given initial conditions, e = x(k), e =y(k), e,, (k - 1) = e; (k - 1) = 0 and all
lattice coefficients zero,

Step 1: for k= 1,m compute
e.,(k) = ej ex(k-)w ,, (-)

.,(k) + w2' b._, ( k-1
ef (k)=ef.., (k)+ , 7+'e x (k- 1)-w7+ I

(k f' 4 b. .(k - 1)

with output e (k)

Step 2: for k= l,m compute

(k)_e (k) - "g' e._ (

eb (k)= -b _ (k - l - ef- () + 1) ef_, (w)

Step 3: Update coefficients

b0 (k)k)0(k(k-l)

rj (k) = rj (k - 1) -2~ ) ex, - 1
2 ()(k)

kj (k) = kj (k - 1) - 2 e(k,) e',_1 (k - 1)

19 ()bo(k ) = bo( k - 1) - e(k) efx (k
y,2 (k) ..( )

Step 4: Repeat for next iteration i.e. return to step 1.
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IV. EXPERIMENTAL RESULTS

The adaptive lattice algorithm derived in Chapter III is now computer simulated to

study its convergence performance. The system identification mode of adaptive filtering

is considered for this purpose. Figure 15 shows a general system identification config-

uration. The systems considered are time-invariant and linear. Notice that we apply the

same input, white noise in general, to both the reference system and the adaptive lattice

filter which is modeling the system. The criterion in this configuration is to minimize the

mean-squared error between the system and filter outputs. Thus, in this context, the

adaptive algorithm continuously updates the lattice filter parameters in order to mini-

mize the mean-squared error.

The adaptive algorithm is realized as summarized in Table I. As we mentioned in

Chapter I 1I. the two important parameters of the algorithm are the adaptation constant

u and the weighting constant p . In what follows, we shall consider convergence studies

of both second and third order reference systems (fixed filter transfer functions). Con-

sider the following reference system with transfer function,

I + 0.2 :-1 - 0.35 z- 2

I - 1.4 : - 1 + 0.85 z -2

This system has complex poles and simple zeros located at z =-(0.7 +jO.6) and

z = 0.5, -0.7, respectivcly. Using a convergence constant ' = 0.01 and power level

weighting factor p = 0.45, the adaptive ARMA digital lattice filter which modcls the

above system has the following steady-state lattice parameters,

terminal condition b0 = 0.999202

lattice coefficients r = 0.352580
2r - _0.174355

=k -- -0.448228

k= = 0.425060

Convergence properties of the lattice coefficients and error are shown in Figure 16. The

mean-squared error was minimized after approximately 1700 iterations at which time the

lattice coefficients reached their steady-state values. When the value of the convergence
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Figure 15. Block diagram of system indentification modeling

constant M was modestly increased. convergence degraded rapidly. Also, when the

weighting factor p was increased. convergence deteriorated quickly. From this, we con-

clude that the convergence constant is the more sensitive input paramcter.

Let us consider another second order dynamic system with transfer function,

0.5 -0.2 -- 0.445 -2

S- z' + 0.94 z 2

This system has complex poles at z = (0.5 +j0.S) and complex zeros locatcd at

z = (0.2 ±jO.7). Using a convergcnce constant u = 0.005 and power level weighting

factor p = 0.97, the adaptive ARMA digital lattice filter which models this system has

steady-state lattice parameters as follows,

terminal condition b0 = 0.500027

lattice coefficients ri-- 0.104654
r2 0.296658

k' -0.429232

k1 -- 0.627718
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Figure 16. Second order ARNIA lattice filter, terminal condition unity.
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Convergence properties of this adaptive filter are shown in Figure 17. In this example,

convergence was obtained after approximately 2500 iterations. Again, by changing the
values ofp and p slightly, covergence deteriorated with the convergence constant p. being

the more sensitive parameter.

Next we consider a third order reference system with known transfer function,

0.5 - 0.95 : - 1 + 1.33 z2 - 0.979 z 3

HAz) = 1 - 1.69 z1 + 0.962 z 2 -0.2 z3

The adaptive ARMA digital lattice filter which describes this system has the following

steady-state lattice parameters,

terminal condition b0 = 0.499970

lattice coefficients r, = -0.328447
2= 0.399472

• 3
3 = -0.652706

k= -0.821738

ki= -0.091111

= -0.13 3 33

These parameters were obtained using a convergence constant u = 0.015 and power level

weighting factor p = 0.9. Convergence properties of this adaptive filter are shown in

Figure 18. Steady-state values for the lattice coefficients were obtained after approxi-

matelv 7100 iterations. It is reasonable to assume that a third order system will converge

more slowly than a second order system. The number of iterations required for this third

order system to converge is consistant with convergence rates of other adaptive algo-

rithms which model third order systems [Ref. 16]. The input parameter p was again

found to be the more sensitive parameter.

In all the previous examples, the values of A and p may or may not be optimum
values. That is, an exhaustive search of all combinations ofup and p was not performed

to demonstrate convergence of the algorithm. Nevertheless, a number of different ways

of realizing the value of the convergence constant A have been reported in the literature.

In one method, Mikhael et. al. [Ref. 17] have obtained a variable p by using a self opti-

mizing technique. In this method. M is calculated from the input data as an iteration

process and is individually determined for each filter parameter. In another method p is

chosen by using a variable step LMS technique [Ref. 18]. where the range of p is
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specified by u,,,x and u, which are within the bounds described by equation (3.4) of

Chapter III. These techniques of choosing u during the adaptation process have been

shown to improve filter convergence. They, however, require additional computations

to achieve this faster convergence. When a combination of the parameters p and p was

obtained which yielded convergence, these values were chosen for examples. Besides the

examples reported, simulation studies have been carried out for several other cases. In

all cases, however, definite convergence of the algorithm has been observed.

In summary, we have demonstrated through computer simulation that the derived

adaptive lattice algorithm is suited for system identification modeling. Furthermore, we

have shown that there is flexibility in choosing the values of the convergence constant

,u and weighting factor p . Some techniques for selecting (computing) the value of the

convergence constant have been introduced. These methods improve convergence at the

cost of additional computations.

A. CONCLUSIONS

In this thesis we have demonstrated that the ARMA parameter estimation algo-

rithm proposed in [Ref. 4: pp. 619-621] is a valid method for obtaining approximations

to reference models. Furthermore, the criterion used to derive the algorithm is a gener-

alized form of the Mullis-Roberts criterion for least squares modeling. The AR and MA

parameters of the ARMA model can be updated independently as their respective orders

increase by one. From the recursive prediction error formulas, an ARMA digital lattice

filter was designed with arbitray AR and MA orders.

For the ARMA digital lattice filter, we derived an adaptive lattice algorithm. This

algorithm was based on the least mean square method of optimizing coefficients. The

derived adaptive lattice algorithm can easily compute the values of the lattice coefficients

from available data. The algorithm simplified the number of coefficents required to be

updated from eight coefficients per elementary lattice section to only two such that the

filter can be completely described. This savings in computational effort makes the al-

gorithm attractive for identification of unknown systems since many systems require an

ARMA model for parsimonious modeling.

Convergence of the adaptive lattice algorithm was demonstrated with several exam-

ples in Chapter III. The number of iterations required before convergence varied greatly

between second and third order models as well as within second order models. Optimum

convergence rates were not sought after as much as proving the convergence of the al-

gorithm. Rapid convergence rates were demonstrated in Chapter II for a second order
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system upon completion of an extensive search for the optimun values of the conver-

gence constant and power level weighting factor.

Although a method of converting between direct form and lattice realizations for

second order ARMA filters was developed, a general algorithm to perform this trans-

formation given the ARMA lattice filter design was not obtained. When solving for a

transformation between filter realizations of third order the solution is hindered by

nonlinearities.

The objectives of the thesis were sucsessfully accomplished. Some suggestions for
future work include the following: (i) extensive theoretical analysis for determining op-

timum values for u , (ii) derivation of a generalized algorithm which converts any given

ARMA transfer function into a set of lattice parameters, (iii) development of theoretical

convergence models for the ARMA adaptive lattice algorithm and analysis of these

models and (iv) application of the adaptive lattice filter, both analysis and synthesis

forms, in modeling such practical signals as speech. ARMA lattice filter modeling has

considerable application potential because of its very accurate modeling of nearly any

signal or system of interest.
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APPENDIX A. MAIN PROGRAM TO ESTIMATE ARMA PARAMETERS

C THIS PROGRAM COMPUTES THE ARMA PARAMETERS AS THE AR OR MA ORDER
C OF AN ARMA MODEL INCREASES BY ONE. IT USES THE ARMA PARAMETER
C ESTIMATION ALGORITHM PROPOSED BY MIYANAGA, NAGAI AND MIKI.
C
C VARIABLE DEFINITIONS
C
C VN - INPUT VECTOR CONTAINING DATA GENERATED AS WHITE GAUSSIAN
C NOISE
C Y - OUPUT VECTOR OF DIFFERENCE EQUATION WITH VN AS INPUT
C RX - AUTOCORRELATION DATA OF INPUT VN
C RY - AUTOCORRELATION DATA OF OUTPUT Y
C RXY - CROSSCORRELATION DATA OF INPUT AND OUTPUT
C RYX - CROSSCORRELATION DATA OF OUTPUT AND INPUT
C NDATA - NUMBER OF INPUT DATA POINTS
C KDATA - NUMBER OF INITIAL DATA POINTS TO DISREGARD
C Xl - INPUT DATA VECTOR AFTER DISCARDING KDATA POINTS
C Yl - OUTPUT DATA VECTOR AFTER DISCARDING KDATA POINTS
C A - VECTOR CONTAINING CALCULATED AR PARAMETERS
C B - VECTOR COINTAINING CALCULATED MA PARAMETERS
C TXA - VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
C INPUT
C TYA - VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
C OUPUT
C TXB - VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
C INPUT
C TYB - VECTOR CONTAINING COEFFICIENTS FOR FORWARD PREDICTION OF
C OUTPUT
C GA - VECTOR CONTAINING COEFFICIENTS FOR BACKWARD PREDICTION OF
C INPUT
C GB - VECTOR CONTAINING COEFFICIENTS FOR BACKWARD PREDICTION OF
C INPUT
C ZTA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT VALUES
C ZTB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT VALUES.
C NI - LENGTH OF DATA VECTOR Xl
C NK - LENGTH OF DATA VECTOR Xl MINUS ONE USED TO START
C CORRELATION COMPUTATIONS.
C NS - DESIRED AR ORDER OF ARMA MODEL.
C NT - DESIRED MA ORDER OF ARMA MODEL
C KS - CURRENT AR ORDER OF UPDATE
C KT - CURRENT MA ORDER OF UPDATE
C VX - EXPECTED VALUE OF PREDICTION ERROR FOR INPUT SQUARED.
C VY - EXPECTED VALUE OF PREDICTION ERROR FOR OUTPUT SQUARED.
C VXY - EXPECTED VALUE OF PRODUCT OF PREDICTION ERROR FOR INPUT
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C AND OUTPUT.
C VG - EXPECTED VALUE OF BACKWARD PREDICTION ERROR OF INPUT
C SQUARED.
C VZ - EXPECTED VALUE OF BACKWARD PREDICTION ERROR OF OUTPUT
C SQUARED.
C VGZ - EXPECTED VALUE OF PRODUCT BETWEEN BACKWARD PREDICTION

ERRORS OF INPUT AND OUTPUT.
C

DIMENSION VN(-5: 2006) ,Y(-5: 2006) ,RX(0: 2000) ,RY(0: 2000),RXY(0: 2000)
DIMENSION RYX(0:2000),X1(2000),YI(2000),X(12),A(0:21),B(0:21)
DIMENSION TXA(0: 21) ,TYA(0: 21) ,TXB(O: 21) ,TYB(0: 21) ,GA(0: 21)
DIMENSION GB(0: 21) ,ZTA(0: 21) ,ZTB(0: 21)

C
C INPUT DATA INFORMATION
C

WRITE (6,1)
1 FORMAT (/' ENTER THE NUMBER OF DATA POINTS:')

READ (6,*) NDATA
WRITE (6,2)

2 FORMAT (/' ENTER NUMBER OF INITIAL DATA POINTS TO DISREGARD:')
READ (6,*) KDATA

C
C
C
C INITIALIZE ARRAYS
C

DO 10 L-5,NDATA
VN(L)=0
Y(L) =0

10 CONTINUE
DO 15 L=0,20
A(L)=0
B(L)=O
TXA(L)=0
TXB(L)=0
TYA( L)=O
TYB(L)=0
GA(L) =0
GB(L) =0
ZTA(L)=O
ZTB(L)0U

15 CONTINUE
DO 20 L0,1999
RX(L)=0
RY(L)=0
RXY(L)=0
RYX(L) 

20 CONTINUE
DO 25 L=1,12
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X(L)=0
25 CONTINUE
C
C
C
C GENERATE WHITE GAUSSIAN NOISE INPUT
C

ISIZE=NDATA
1X=152255
ISORT=-0
MUL=2
DO 30 K=1,ISIZE

CALL SRND(IX,X,12,MUL,ISORT)
XT=-6. 0

DO 35 I=1,12
35 XT=XT+X(I)

VN( K) =XT
30 CONTINUE
C
C
C
C COMPUTE OUTPUT OF REFERENCE MODEL FILTER AND DISREGARD SPECIFIED
C NUMBER OF DATA POINTS
C

DO 40 L1I,NDATA
C Y(L)=VN(L)+1. 6*Y(L-1)-0. 95*Y(L-2)
C Y(L)=VN(L)+0. 2*Y(L-1)-0. 62*Y(L-2)+0. 152*Y(L-3)-0. 3016*Y(L-4)
C Y(L)=VN(L)-0. 2*VN(L-1)+0. 62*VN(L-2)-0. 152*VN(L-3)+0. 3016*VN(L-4)
C Y()V()02V(-1-.9V(- 02Y(-)06*(-)0152*Y
C &(L-3)-0. 3016*Y(L-4)
C Y()V()l6VNL1+.5V(-2 .*(-)072*Y(L-2)

C Y(L)=VN(L)-2.7*N 1+.1V(-)l55*NL3+.5YL1-..
C &*Y(L-2)+0. 54*Y(L-3)
C Y()V()IOV(-)08*NL2)04*(-)022*(-)02
C &894*Y(L-3)-1. 810373*Y(L-4)
C Y(L)=0. 5*VN(L)-0. 95*VN(L-1)+1. 33*VN(L-2)-0. 979*VN(L-3)+1. 69*Y(L-1)
C &-0. 962*Y(L-2)+O. 20*Y(L-3)
C Y(L)=0. 5*V(L).4*VN(L..1)+0.89*VN(L-2)+1. 69*Y(L-1)-0. 962*Y(L-2)+0
C &.2*Y(L-3)
C Y()05V()04V(-)08*N(-)02YL1+.5YL2-.
C &5'*Y(L-3)
C Y(L)=0. 5*V(L)-0.4*VN(L-1)+0. 89*VN(L-2)+0. 89*Y(L-1)-0. 25*Y(L-2)
C Y(L)=. 0154*VN(L)+. 0642*VN(L-1)+O. 0642*VN(L-2)+O. O154*VN(L-3)+1. 99*
C &Y(L-1)-1. 57*Y(L-2)+0.4S83*Y(L-3)
C Y(L)=0. 5*VN(L)+0.256*VN(L-1)+0. 1234*VN(L-2)+0. O987*VN(L-3)
40 CONTINUE
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LJ=KDATA+I
DO 45 LLJ,NDATA

LK=L-KDATA
Xl(LK)=VN(L)
Y1(LK)=Y(L)

45 CONTINUE
C WRITE (*,77) (Y1(K), K=200,1800)
77 FORMAT (5(1X,FlO.6))
C
C
C
C COMPUTE AUTO-CORRELATION AND CROSS-CORRELATION TERMS
C
46 NI=NDATA-KDATA

NK=NI -1
CALL CORREL (NI,50,X1,Yl,RX,RY,RXY,RYX,NK)

47 DO 50 L=0,10
WRITE (*,200) RX(L),RY(L),RXY(L),RYX(L)
WRITE (9,200) RX(L),RY(L),RXY(L),RYX(L)
WRITE (9,201)

50 CONTINUE
WRITE (9,201)

200 FORMAT (2X,4(2X,F14.9))
201 FORMAT (' ')
C
C
C
C INPUT THE DESIRED AR AND MA ORDERS THEN DEFINE INITIAL CONDITIONS
C
48 WRITE (6,3)
3 FORMAT (/' ENTER THE DESIRED AR ORDER:')

READ (6,*) NS
WRITE (6,4)

4 FORMAT (/' ENTER THE DESIRED MA ORDER:')
READ (6,*) NT

C
KS=0
KT=O
A(O)=1. 0
VX=RX(O)
VY=RY(O)
VXY=-RYX( 0)
VG=RX(O)
VZ=RY(0)
VGZ=-RYX(0)
TXB(O)=1. 0
TYA(O)=1. 0
GB(O) =1.0
ZTA(0)=I. 0

C
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C

C ESTIMATE THE ARMA PARAMETERS

300 IF (NT. EQ.0. AND. KS. LT. NS) THEN
KS=KS+ 1

CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
& ,RX ,RY ,RXY ,RYX ,A, B)
GOTO 300
ELSE

301 IF (NS.EQ.0.AND.KT.LT.NT) THEN
KT=-KT+ 1

CALL NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
& ,RX ,RY ,RXY ,RYX,A,B)

GOTO 301
ENDIF
ENDIF

C
IF (NS.NE.0.QR.NT.NE.0) THEN

302 IF (NS. GE. NT. AND. NT. NE.0. AND. KT. LT. NT) THEN
KS=KS+ 1

CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
& ,RX ,RY ,RXY ,RYX ,A, B)

KT=KT+ 1
CALL NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB

&,RX,RY,RXY,RYX,A,B)
GOTO 302
ELSE

303 IF (KS. LT. NS) THEN
KS=KS+1

CALL NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,ZTA,ZTB
& ,RX ,RY ,RXY ,RYX ,A, B)
GOTO 303

ENDIF
END IF
ENDIF

I,

C

C PRINT ESTIMATED ARMA PARAMETERS

WRITE (*,211)
WRITE (9,211)
WRITE (*,210) (A(K), K=1,KS)
WRITE (9,210) (A(K), K=1,KS)
WRITE (*,211)
WRITE (9,211)

211 FORMAT(' ')
WRITE (*,210) (B(K), K0O,KT)
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WRITE (9,210) (B(K), K=O,KT)
210 FORMAT (' ',1X,4(2X,F13.1O))

STOP
END

C
C
C
C SUBROUTINE TO COMPUTE CORRELATION TERMS
C

SUBROUTINE CORREL(N,LAG,X,Y,RX,RY,RXY,RYX,NK1)
REAL X(O:NK1),Y(O:,NKI),RLX(O:2000),RY(0:2000),RXY(O:2000)
REAL RYX(O: 2000) ,SUM1,SUM2,SUM3,SUM4
DO 70 K=0,LAG

NJ=N-1-K
SUM 1=0
SUM2O0
SUM3=0
SUM4=0
A\K=NJ

DO 60 J=0,NJ
SUM1=SUM1+X( J+K) *X( J)
SUM2=SUM2+Y( J+K)*Y( J)
SUM3=SUM3+X( J+K)*Y( J)
SUM4=SUM4+X( J)*Y( J+K)

60 CONTINUE
RX(K)=SUM1/ANK
RY( K)=SUM2/ANK
RYX( K)=SUM3/ANK
RXY( K) -SUM1ANK

70 CONTINUE
RETURN
END
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APPENDIX B. SUBROUTINE FOR MAIN PROGRAM

SUBROUTINE NEWAR(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB ,TYA,TYB,GA,GB,Z
&TA, ZTB, RX, RY, RXY, RYX, A, B)

C
C THIS SUBROUTINE COMPUTES AR PARAMETER VALUES FOR AN ARMA MODEL AS
C THE AR ORDER INCREASES BY ONE.
C
C VARIABLE DEFINITIONS
C
C KS - CURRENT AR ORDER
C KT - CURRENT MA ORDER
C RX - AUTOCORRELATION DATA OF INPUT VN
C RY - AUTOCORRELATION DATA OF OUTPUT Y
C RXY - CROSSCORRELATION DATA OF INPUT AND OUTPUT
C RXY - CROSSCORRELATION DATA OF OUTPUT AND INPUT
C TXA - VECTOR CONTAINING AR COEFFICIENTS FOR FORWARD PREDICTION
C OF INPUT.
C TXB - VECTOR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
C OF INPUT
C TYA - VECTOR CONTAINING AR COEFFICIENTS FOR FORWARD PREDICTION
C OF OUTPUT
C TYB - VECTOR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
C OF OUTPUT
C GA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
C OF INPUT
C GB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
C OF INPUT
C ZTA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT
C ZTB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT
C C - ARRAY WHICH STORES CURRENT VALUES OF TXA
C D - ARRAY WHICH STORES CURRENT VALUES OF TYA
C E - ARRAY WHICH STORES CURRENT VALUES OF GA
C F - ARRAY WHICH STORES CURRENT VALUES OF ZTA
C P - ARRAY WHICH STORES CURRENT VALUES OF TXB
C Q - ARRAY WHICH STORES CURRENT VALUES OF TYB
C R - ARRAY WHICH STORES CURRENT VALUES OF GB
C S - ARRAY WHICH STORES CURRENT VALUES OF ZTB
C A - VECTOR UPDATED AR COEFFICIENTS OF ARMA MODEL
C B - VECTOR CONTAINING UPDATED MA COEFFICIENTS OF ARMA MODEL.
C TAUl - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C TAU2 - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C TAU3 - CONSTANT COIMPUTED FROM CORRELATION DATA AND PREDICTION
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C ERROR COEFFICIENTS.
C TAU4 - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C XIIU1 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C YMUl - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C MU2 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C XMtJ3 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C YM3 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C MU4 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C MIJ5 - COEFFICIENT OF AR-TYPE RECURSIVE FORMULA
C DET - DETERMINANT OF PREDICTION ERROR MATRIX COMPOSED OF
C VX,VY,VXY.
C ERR - ERROR BETWEEN REFERENCE MODEL OUTPUT AND LATTICE
C REALIZATION OUTPUT.
C

DIMENSION RX(0: 2000) ,RY(O: 2000) ,RXY(0: 2000),RYX(O: 2000) ,A(0: 21)
DIMENSION B(O:21),TXA(0:21),TYA(0:21),TXB(0:21),TYB(0:21),GA(0:21)
DIMENSION GB(O:21),ZTA(0:21),ZTB(0:21),C(O:21),D(0:21),E(0:21)
DIMENSION P(0: 21),Q(O: 21) ,R(0: 21) ,S(0: 21) ,F(0: 21)
REAL MU5,MU2,MU4

C
C COMPUTE VALUES FOR TAUl THROUGH TAU4
C

TIS=0
T2S=0
T3S=0
T4S0O
KI=KS-1L
DO 10 I=0,KI
TlS=T1S-RYX( I+1)*ZTA(KI-I)
T2S=T2S+RY( I+1)*ZTA(KI-I)
T3S=T3S+RY( I+1)*GA( I)
T4S5T4S+RY( 1+1 )*ZTA( I)

10 CONTINUE
T1T=O
T2T=0
T3T=O
T4T=0
DO 20 J=0,KT

T1T-T1T+RX( J+1 )*ZTB(KT-J)
T2T=T2T-RXY( J+1)*ZTB(KT-J)
T3T=-T3T-RYX( KI -KT+1+J)*GB(J)
T4T-T4T-RYX( KI -KT+1+J) *ZTB(J)

20 CONTINUE
TAU1=T1S+TIT
TAU2-T2S+T2T
TAU3=T3S+T3T
TAU4=T4S+T4T

C
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C COMPUTE VALUES FOR THE REFLECTION COEFFICIENTS
C

XMU1=-TAU1/VZ
YMU1=-TAU2/VZ
MU2 =-VGZ/VZ
DET =VX*VY-VXY*VXY
XMU3=-(VY*TAU1 -VXY*TAU2)/DET
YMU3=- ( VXY*TAU1+VX*TAU2 )/DET
MU4 =(VGZ*TAU4 -VZ*TAU3)/I( VGZ*VGZ -VG*VZ)
MTJ5 41TJ4*MTJ2

C COMPUTE ARNA COEFFICIENTS
C

DO 16 K=O,KS
C(K)=-TXA(K)
D( K) -TYA( K)
E(K)=GA(K)
F(K)=ZTA(K)

16 CONTINUE
DO 45 J=1,KS
TXA(J)=C(J)+XMU1*F(KS-J)
TYA(J)D(J)+YMU1*F(KS-J)

a GA(J)=E(J-1)+MU2*F(J-1)
ZTA( J)=F(J)+XMU3*C(KS-J)+YMU3*D(KS-J)+MU4*E(J- 1)+MU5*F(J- 1)

45 CONTINUE
DO 31 K=O,KT
P( K) =TXB (K)
Q(K)=TYB(K)
S(K)=ZTB(K)
R(K)=GB(K)

31 CONTINUE
DO 55 J=1,KT
TXB(J)=P(J)+XMU1*S(KT+1-J)
TYB(J)=Q(J)+Y11U1*S(KT+1-J)
GB(J) =R(J)+MU2*S(J)
ZTB( J)=S( J+1)+XMU3*P(KT-J)+YMU3*Q( KT-J)+MU4*R( J)+MU5*S( J)

55 CONTINUE
C WRITE (*,176) KS
C WRITE (9,176) KS
176 FORMAT(I2)
C WRITE (*,175) (ZTB(K), K0O,KT)
C WRITE (9,175) (ZTB(K), K=O,KT)
175 FORMAT (4(1X,F1O. 5))
C
C UPDATE ERRORS
C
650 FORMAT (/' S UPDATE ERROR IS: ',F15.10)

VX =VX+XMU1*TAU1
VY =VY+YMU1*TAU2
VXY=VXY+XMU 1*TAU2
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VG =VG+MtJ2*VGZ
VZ=VZ+( XMU3*TAU1+YMtJ3*TAU2)+MU4*TAU3+MU5*TAU4
VGZ=TAU3+MU2*TAU4
ERR=VY-( VXY**2) /VX
WRITE (*,630) ERR
WRITE (9,650) ERR
WRITE (*,888) VX,VY,VG,VZ

888 FORMAT (4(1X,FIO. 6))
C
C COMPUTE MODEL COEFFICIENTS
C

DO 65 J=1,KS
A( J)TYA( J) -TXA( J)*VX/VXy

65 CONTINUE
DO 70 J=1,KT
B( J)TYB( J) -TXB( J)*VXY/VX

70 CONTINUE
BC O)=-VXY/VX
RETURN
END
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APPENDIX C. SUBROUTINE FOR MAIN PROGRAM

SUBROUTINE NEWMA(KS,KT,VX,VY,VXY,VG,VZ,VGZ,TXA,TXB,TYA,TYB,GA,GB,Z
&TA,ZTB,RXRY,RXY,RYX,A,B)

C
C THIS SUBROUTINE COMPUTES MA PARAMETER VALUES FOR AN ARMA MODEL AS
C THE MA ORDER INCREASES BY ONE.
C
C VARIABLE DEFINITIONS
C
C KS - CURRENT AR ORDER
C KT - CURRENT MA ORDER
C RX - AUTOCORRELATION DATA OF INPUT VN
C RY - AUTOCORRELATION DATA OF OUTPUT Y
C RXY - CROSSCORRELATION DATA OF INPUT AND OUTPUT
C RXY - CROSSCORRELATION DATA OF OUTPUT AND INPUT
C TXA - VECTOR CONTAINING AR COEFFICIENTS FOR FORWARD PREDICTION
C OF INPUT.
C TXB - VECTOR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
C OF INPUT
C TYA - VECTOR CONTAINING AR COEFFICIENTS FOR FORWARD PREDICTION
C OF OUTPUT
C TYB - VECTOR CONTAINING MA COEFFICIENTS FOR FORWARD PREDICTION
C OF OUTPUT
C GA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
C OF INPUT
C GB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
C OF INPUT
C ZTA - VECTOR CONTAINING AR COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT
C ZTB - VECTOR CONTAINING MA COEFFICIENTS FOR BACKWARD PREDICTION
C OF OUTPUT
C C - ARRAY WHICH STORES CURRENT VALUES OF TXA

D - ARRAY WHICH STORES CURRENT VALUES OF TYA
C E - ARRAY WHICH STORES CURRENT VALUES OF GA
C F - ARRAY WHICH STORES CURRENT VALUES OF ZTA
C P - ARRAY WHICH STORES CURRENT VALUES OF TXB
C Q - ARRAY WHICH STORES CURRENT VALUES OF TYB
C R - ARRAY WHICH STORES CURRENT VALUES OF GB
C S - ARRAY WHICH STORES CURRENT VALUES OF ZTB
C A - VECTOR UPDATED AR COEFFICIENTS OF ARMA MODEL
C B - VECTOR CONTAINING UPDATED MA COEFFICIENTS OF ARMA MODEL.
C TAUIP - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C TAU2P - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C TAU3P - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
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C ERROR COEFFICIENTS.
C TAU4P - CONSTANT COMPUTED FROM CORRELATION DATA AND PREDICTION
C ERROR COEFFICIENTS.
C XETA1 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C YETAI - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C ETA2 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C XETA3 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C YETA3 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C ETA4 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C ETA5 - COEFFICIENT OF MA-TYPE RECURSIVE FORMULA
C DET - DETERMINANT OF PREDICTION ERROR MATRIX COMPOSED OF
C VX,VY,VXY.
C ERR - ERROR BETWEEN REFERENCE MODEL OUTPUT AND LATTICE
C

DIMENSION RX(0: 2000) ,RY(0: 2000) ,RXY(0: 2000),RYX(0: 2000) ,A(0: 21)
DIMENSION B(0:21),TXA(0:21),TXB(0:21),TYA(0:21),TYB(0:21),GA(0:21)
DIMENSION GB(0:21),ZTA(0:21),ZTB(0:21),C(0:21),D(0:21)
DIMENSION E(0:21),F(0:21),P(0:21),Q(0:21),R(0:21),S(0:21)

C
C COMPUTE VALUES FOR TAUI PRIME THROUGH TAU4 PRIME
C

TITP=O
T2TP=O
T3TP=O
T4TP=O
KJ=KT-1
DO 10 I=0,KJ
T1TP=TTP+RX(I+1)*GB(KJ-I)
T2TP=T2TP-RXY(I+I)*GB(KJ-I)
T3TP=T3TP+RX(I+1)*ZTB(I)
T4TP=T4TP+RX(I+1)*GB(I)

10 CONTINUE
TISP=0

T2SP=0
T3SP=0
T4SP=0
DO 20 J=0,KS
TlSP=TSP-RYX(J+1)*GA(KS-J)
T2SP=T2SP+RY(J+1)*GA(KS-J)
T3SP=T3SP-RXY(KJ-KS+1+J)*ZTA(J)
T4SP=T4SP-RXY(KJ-KS+1+J)*GA(J)

20 CONTINUE
TAUlP=TITP+T1SP
TAU2P=T2TP+T2SP
TAU3P=T3TP+T3SP
TAU4P=T4TP+T4SP

C
C COMPUTE VALUES FOR REFLECTION COEFFICIENTS
C

XETA1=-TAUlP/VG
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YETAI=-TAU2P/VG
ETA2 =-VGZ/VG
DET =VX*VY-VXY*VXY
XETA3=-(VY*TAUlP-VXY*TAU2P) /DET
YETA3=-(-VXY*TAU1P+VX*TAU2P) /DET
ETA4 =( VGZ*TAU4P -VG*TAU3P) / (VGZ*VGZ -VG*VZ)
ETAS =ETA4*ETA2

C
C COMPUTE ARIMA PARAMETERS

DO 16 K0O,KT
P(K)-TXB(K)
Q(K)-TYB(K)
R(K)=GB(K)
S(K)=ZTB(K)

16 CONTINUE
165 FORMAT (4(1X,F1O. 5))

DO 45 J=1,KT
TXB(J)=P( J)+XETA1*R(KT-J)
TYB(J)=Q(J)+YETAI*R(KT-J)
GBJ=()XT3PK-)YT3Q(TJ+T4SJ1+T5RJ1
ZTB(J)=S(J-1)+ETA2*R(J- 1)

45 CONTINUE
DO 41 K=O,KS
C (K)=TXA (K)
D(K)=TYA(K)
E(K)=GA(K)
F(K)=ZTA(K)

41 CONTINUE
175 FORMAT (S( 1X,F1O. 5))

DO 55 J=1,KS
TXA(J)=C( J)+,XETA1*E(KS+1-J)
TYA(J)=D(J)+YETA1*E(KS+1-J)
GA(J)=E( J+1)+XETA3*C( KS-J)+YETA3*D(KS-J)+ETA4*F( J)+ETA5*E( J)
ZTIA( J)=F( J) +ETA2*E (J)

55 CONTINUE
C
C UPDATE ERRORS
C

VX=VX+XETA 1*TAU iP
VY=VY+YETA1*TAU2P
VXY=VXY+XETA 1'TAU2P
VG=VG+( TAUlP*XETA3+TAU2P*YETA3 )+ETA4*TAU3P+ETAS*TAU4P
VZ=VZ+ETA2*VGZ
VGZ=TAU3P+ETA2*TAU4P
ERR=VY-( VXY**2) /VX
WRITE (*,66) ERR
WRITE (9,66) ERR

66 FORMAT (/' T UPDATE ERROR IS: ',F15.10)
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WRITE (*,889) VX,VY,VG,VZi.889 FORIMAT (4(lX,FIO. 6))
C
C COMPU'TE MODEL COEFFICIENTS
C

DO 65 J=l,KT
B(J)=TYB(J) -TXB(J)*VXY/VX

65 CONTINUE
DO 70 J=1,KS
A(J)=TYA( J) -TXA( J)*VX)Y/VX

70 CONTINUE
B(0)=-VXY/VX
RETURN
END
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APPENDIX D. ADAPTIVE LATTICE ALGORITHM PROGRAM

C THIS PROGRAM CALCULATES VALUES OF THE LATTICE COEFFICENTSAND
C OUTPUT OF AN ARMA DIGITAL LATTICE FILTER USING AN ADAPTIVE
C LATTICE ALGORITHM.
C
C VARIABLE DEFINITIONS
C
C X - ARRAY OF INPUT DATA, COMPUTER GENERATED WHITE GAUSSIAN
C NOISE WITH UNIT VARIANCE.
C AK - ARRAY OF LATTICE COEFFICIENTS.
C R - ARRAY OF LATTICE COEFFICIENTS.
C BO - TERMINAL CONDITION OF LATTICE REALIZATION.
C M - NUMBER OF LATTICE STAGES (EQUIVALENT TO ORDER OF ARMA
C MODEL).
C EXF - ARRAY OF FORWARD PREDICTION ERRORS FOR INPUT X.
C EXB - ARRAY OF BACKWARD PREDICTION ERRORS FOR INPUT X.
C EXBD - ARRAY OF DELAYED BACKWARD PREDICTION ERRORS FOR INPUT X.
C EYF - ARRAY OF FORWARD PREDICTION ERRORS FOR OUTPUT Y.
C EYB - ARRAY OF BACKWARD PREDICTION ERRORS FOR OUTPUT Y.
C EYBD - ARRAY OF DELAYED BACKWARD PREDICTION ERRORS FOR OUTPUT Y.
C ERROR - DIFFERENCE BETWEEN REFERENCE MODEL OUTPUT AND LATTICE
C REALIZATION OUTPUT.
C YE - ARRAYS CONTAINING LATTICE COEFFICIENT VALUES AT EACH
C ITERATION.
C MU - CONVERGENCE CONSTANT.
C RHO - WEIGHT GIVEN TO CUURENT POWER LEVEL AT EACH STAGE OF THE
C LATTICE STRUCTURE.
C SIGK - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
C UPDATING AK LATTICE COEFFICIENTS.
C SIGR - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
C UPDATING R LATTICE COEFFICIENTS.
C SIGB - POWER LEVEL USED TO NORMALIZE CONVERGENCE CONSTANT WHEN
C UPDATING TERMINAL CONDITION BO.
C

DIMENSION EXF(10),EXB(10),EXBD(10),EYF(10),EYB(10),EYBD(10),R(10)
DIMENSION AK(10), X(9900), ERROR(9900), V(12), YE(6,9900)
REAL MU
SIGK=l.
SIGR=l.
SIGB=l.

C
C INITIALIZE ARRAYS
C

DO 5 I=1,10
EXF(I)=0
EXB( I)=0
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EXBD(I)0O
EYF(I)0O
EYB( I)0O
EYBD( I )=0
R(I)=0
AK( I)0O

5 CONTINUE
DO 6 I=1,9000
X(I)=0
ERROR( I )0

6 CONTINUE
C
C ENTER VALUE OF THE CONVERGENCE CONSTANT MU AN) VALUE OF RHO.
C

M=2
N=300
WRITE (6,*) 'ENTER MU'
READ(6,*) MU
WRITE (6,*) 'ENTER RHO'
READ (6,'*) RHO

C
C GENERATE WHITE GAUSSIAN NOISE
C

ISIZE = N
IX = 152255
ISORT =0
MUL = 2
DO 7 K= 1,ISIZE
CALL SRND( IX,V, 12 ,MUL, ISORT)
XT=-6. 0

DO 8 I=1,12
8 XT=XT+V(I)

X(K)=XT
7 CONTINUE
C
C COMPUTE OUTPUT OF REFERENCE MODEL FILTER AND LATT'ICE STRUCTURE
C THEN COMPUTE THE ERROR.
C
C REFERENCE MODEL

Y3=0
Y2=0
y1=0
X3=0
X2=0
X1=O
B0=1.
DO 100 I=1,N

C YF=X(I)-0. 8*X1+1. 78*X2+O. 89*Yl-0. 25*Y2

L 
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YF0. 5*X(I).4*Xl+.89*X2+O. 89*Yl-0. 25*Y2
C YF=X(I)-2. 7*Xl+3.21*X21595*X3+195*Yl1.162*Y2+0.54*Y3
C YF=O. 5'X(I)-O. 95*X1+1.33*X2-0.979*X3+1.69*Y1-0. 962*Y2+0. 2*Y3
C YF=X(I)+0. 2*X1-O. 35*'X2+1. 4*Y1-O. 85*Y2
o YF=o. 5*X(I).2*X1+0. 445*X2+1. 0*Yl.0. 94*Y2

C Y3=Y2
Y2=Yl
Y 1=YF

o X3=X2
X2=X1
X1=X(I)

C
C LATTICE FILTER
C

EXF(1)=X(I)

DO 10 K=1,M
10 EXF(K+1)=EXF(K)+R(K)*EXBD(K)-AK(K)*EYBD(K)

EYF(M+1)=B0'*EXF(M+l)
DO 20 K=1,M

20 EYF(M+1-K)=EYF(M+2-K)+R(M+1-K)*EXBD(M+1-K) -AK(M+1-K)*EYBD(M+1-K)
EYB( 1)=EYF( 1)
DO 30 K=1,M-1
EXB(K+1)=EXBD(K)+R(K)*EXF(K) -R(K)*EYF(K)

30 EYB(K+1)=EYBD(K)+AK(K)*EYF(K)-AK(K)*EXF(K)
YL-EYF( 1)
ERROR( I)=YF-YL
ERR=YF -YL
CALL UPDATE (R,AK,EYBD,EXBD,ERR,MU,M,SIGK,SIGR,BO,RHO)
CSB=EXF(M+1 )*EX'(f4+1)
SIGB=RHO*SIGB4( 1-RHO)*CSB
BO=BO+( MU/SIGB )*ERR*EXF( M+1)
DO 40 K=1,M
EXBDCK)=EXB(K)

40 EYBD(K)=EYB(K)
DO 50 J=1,M
YE(J,I)=AK(J)

50 YE(J+M,I)=R(J)
202 FORMAT (2(lX,F1O.6))
100 CONTINUE
C
C PRINT THE ERROR AND VALUES OF THE LATTICE COEFFICIENTS.
C

WRITE (*,200) (ERROR(K), K=1,N,10)
WRITE (9,200) (ERROR(K), K=1,N,1O)

200 FORMAT (5(1X,F1O.6))
WRITE (9,209)

209 FORMAT(')
WRITE (*,201) (R(K), K=1,M)
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WRITE (*,201) (AK(K), K=1,M)
WRITE (9,201) (R(K), K=1,M)
WRITE (9,201) (AK(K), K=1,M)
WRITE (*,205) BO
WRITE (9,205) BO

205 FORMAT (F10.6)
201 FORMAT (5(1X,F1O. 6))
C
C CALL PLOTTING ROUTINES TO PLOT" ERROR AND LATTICE COEFFICIENTS.

CALL PLOT (ERROR,N)
C CALL PLOTI (YE,N)

STOP
END

C
C SUBROUTINE WHICH UPDATES LATTICE COEFFICIENTS.
C

SUBROUTINE UPDATE(R,AK,EYBD,EXBD,ERR,MU,M,SIGK,SIGR,BO ,RIO)
DIMENSION R(1O),AK(iO) ,EYBD(10),EXBD(10)
REAL MU
CSK=O.
CSR=O.
DO 20 J=1,M
CSK=CSK+EYBD( J)*EYBD( J)*BO**2

20 CSR=CSR+EXBD( J)*EXBD( J)*BO**2
SIGK=RHO*SIGK+(l1 RHO)*CSK
SIGR=RHO*SIGR+( 1-RHO)*CSR
DO 10 J=1,M
R( J)=R(J)+(MU/SIGR)*ERR*EXBD(J)*BO
AK(J)=AK(J) -(MU/SIGK)*ERR*EYBD(J)*BO

10 CONTINUE
RETURN
END

C
C PLOTTING ROUTINE TO PLOT ERROR
C

SUBROUTINE PLOT(Y ,N)
DIMENSION Y(N),X(9900)
DO 10 j1I,N

10 X(J)=J
CALL TEK618

C CALL PRTPLT(72,6)
C CALL SHERPA('ADAPTIVE','A',3)

CALL RESET('ALL')
CALL PAGE(8. 50,6.0)
CALL HWROT('AUTO')
CALL XINTAX
CALL AREA2D(5. 0,3.0)
CALL HEIGHT(O. 14)
CALL COMPLX
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CALL SHDCHR(90.O,1,0.002,1)
CALL HEADIN('LEARNING CURVES$' ,100,2.O,1)
CALL XNAME( 'ITERATIONS$' ,100)
CALL YNAME('ERROR$' ,100)

C CALL MESSAG(' ADAPTIVE FILTER $',100,3.0,-0.8)
CALL THKFRM(0. 03)
CALL FRAME
CALL GRAF(0,'SCALE',N,-3.OO,'SCALE',3.OO)

C CALL THKCRV(0. 02)
CALL CURVE(X,Y,N,0)
CALL ENDPL(0)
CALL DONEPL,
RETURN
END

C
C SUBROUTINE TO PLOT LATTICE COEFFICIENTS
C

SUBROUTINE PLOTi (YE,N)
DIMENSION YE(6,9900),X(9900),Y(9900),YD(9900),A(I0)

C..TRUE VALUES OF THE PARAMETERS
C A(1)=-0.240719
C A(2)=0. 125
C A(3)=-0. 195719
C A(4)=0. 8900
C A(5)=0.89

DO 10 J1I,N
10 X(J)=J

CALL TEK618
C CALL PRTPLT(72,6)
C CALL SHERPA('MENNECKE','A',3)
C..PRINT SHERPA FILE: SHERPA XXYYZZXX SHGRAPH A

CALL RESET('ALL')
CALL PAGE(8. 50,6. 0)
CALL HWROT('AUTO')
CALL XINTAX
CALL AREA2D(5. 0,3. 0)
CALL HEIG}{T(O. 14)
CALL COMPLX
CALL SHDCHR(90.O,1,O.002,1)
CALL HEADIN( 'PARAMETERS$' ,100,2. 0,1)
CALL XNAME('ITERATIONS$' ,100)
CALL YNAME('MAGNITUDE$' ,100)

C CALL MESSAG( 'ADAPTIVE ARMA LATTICE$' ,100,3. 03-0.8)
CALL THKFRM(O. 03)
CALL FRAME
CALL GRAF(0,'SCALE",N,-1.00,'SCALE',1.0)

C CALL THKCRV(0. 02)
C..TO PLOT ESTIMATES

DO 20 K=1,4
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DO 30 J=1,N
30 Y(J)=YE(K,J)

CALL CURVE(X,Y,N,O)
20 CONTINUE
C..TO PLOT TRUE PARAMETERS

DO 40 K=1,4
DO 50 J=1,N

s0 Y(J)-A(K)
CALL DASH
CALL CURVE(XY,N,0)

40 CONTINUE
CALL ENDPL(0)
CALL DONEPL,
RETURN
END
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APPENDIX E. DERIVATION OF DIFFERENCE EQUATION FOR TWO

STAGE ARNIA LATTICE FILTER

The lattice filter is described by the expressions for the forward and backward pre-

diction errors, equations (3.6) and (3.7) respectively,

el, (k) = e)(k) + 12 ( 1) - w ( - 1)

ed (k)= .(k - 1)- wl x(k) + . y(k)
(/,- C) b " (k, - 1)

ef' (k) = ej (k) + w.c (k - 1) - b(k-1

and the expression for the filter output,

Substituting for e (k) in equation (E-2) yields,

Substituting for e! (k - 1) and ev, (k - 1) in equation (E-3)

-, i[ ,(- 2)-w1 x(k- l)+ . y(k - 1)] (E-4)

+1,4'x(k - 1)- w'y(k - 1)

Substituting for e,2 (k) in (E-4) we obtain

y(k)= eJ(k) + w ex (k - 1)- w eb (A-i) + w x(k - 2) + w. w' x(k - I)

21 2 2 1 21
Vw 4 y(k- ) - y(k - 2)+w 3 w _x(k 1) _w wy(A l)(E-5)

+w4 x(k - 1 )-w y(k - 1)

From (E-l), substitute for ez1 (k - 1) and ej (k - 1) in (E-5) to obtain
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-.(k- 2)- 2 x(k 1 2(k

1,4 x(k- 2) +W .x(k - -. iv, y(k - 1) (E6)
-w2 y(k - 2) + w32 wI x(k - 1) - w3 2Iy(k - 1)

+ . x(k - 1) -%1 y(k - 1)

Now, from (E-1), substituting for e (k) in (E-6) yields

y(k) = x(k) + w1 x(k - 1) - wl y(k - 1) + 2xk )+ wxk 1

21 _W2 2+W2W 21W2wNy(k - wI y(k -2)+ww x(k -1) - w w3 y(k - 1)

2+21(E 7)
+ w4 x(k- 2)+W 4 w 2 x(k - 1)-w 4 w4y(k- 1)-W 3 y(k- 2)iv I. x. (k - 1) - 2 1 y(k- l)+ w1x(k- l)- w3y(k- l)

231 21 W

Grouping terms we get,

+ (W2 + 2.)x(k- 2)2(w +,4, + ,-,,.+,12 12 ..- (E- 8)
IW V4 +2 W3 I ;v

- 2 2-(w. + w3)y(k - 2)

From the gradient estimator and coefficient update equations we know that the follow-

ing relationships among lattice coefficients are true

1 1 2 2 1 1 2 2
I = 'v3 VI = 3 W= W4  W2 (E-9)

Using these equalities in equation (E-S), we obtain the final expression for the difference

equation,

1 1 2 1 2 2
y(k) = x(k) + 2(w2 + w1 w1 + W2 w2 ) x(k - 1) + 2 w2 x(k - 2)

- 1 2 1 2 2(E- 10)
2(wl + w2 W2 + w1 w2)y(k - 1)- 2W2 y(k- 2)
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